
CS193p

Winter 2017

Stanford CS193p
Developing Applications for iOS

Winter 2017

CS193p

Winter 2017

Today
Timer
Periodically execute a block of code
Blinking FaceIt Demo

Animation
Animating changes to UIViews
Smoother Blinking FaceIt
Head-shaking FaceIt
Animating using simulated physics (time permitting)

CS193p

Winter 2017

Timer
Used to execute code periodically

You can set it up to go off once at at some time in the future, or to repeatedly go off
If repeatedly, the system will not guarantee exactly when it goes off, so this is not “real-time”
But for most UI “order of magnitude” activities, it’s perfectly fine
We don’t generally use it for “animation” (more on that later)
It’s more for larger-grained activities

Run loops
Timers work with run loops (which we have not and will not talk about)
So for your purposes, you can only use Timer on the main queue
Check out the documentation if you want to learn about run loops and timers on other queues

CS193p

Winter 2017

Timer
Fire one off with this method …
class func scheduledTimer(

withTimeInterval: TimeInterval,
repeats: Bool,
block: (Timer) -> Void

) -> Timer

Example
private weak var timer: Timer?
timer = Timer.scheduledTimer(withTimeInterval: 2.0, repeats: true) {

// your code here
}
Every 2 seconds (approximately), the closure will be executed.
Note that the var we stored the timer in is weak.
That’s okay because the run loop will keep a strong pointer to this as long as it’s scheduled.

CS193p

Winter 2017

NSTimer
Stopping a repeating timer

We need to be a bit careful with repeating timers … you don’t want them running forever.
You stop them by calling invalidate() on them …
timer.invalidate()
This tells the run loop to stop scheduling the timer.
The run loop will thus give up its strong pointer to this timer.
If your pointer to the timer is weak, it will be set to nil at this point.
This is nice because an invalidated timer like this is no longer of any use to you.

Tolerance
It might help system performance to set a tolerance for “late firing”.
For example, if you have timer that goes off once a minute, a tolerance of 10s might be fine.
myOneMinuteTimer.tolerance = 10 // in seconds
The firing time is relative to the start of the timer (not the last time it fired), i.e. no “drift”.

CS193p

Winter 2017

NSTimer
Demo

Blinking FaceIt

CS193p

Winter 2017

Kinds of Animation
Animating UIView properties

Changing things like the frame or transparency.

Animating Controller transitions (as in a UINavigationController)
Beyond the scope of this course, but fundamental principles are the same.

Core Animation
Underlying powerful animation framework (also beyond the scope of this course).

OpenGL and Metal
3D

SpriteKit
“2.5D” animation (overlapping images moving around over each other, etc.)

Dynamic Animation
“Physics”-based animation.

CS193p

Winter 2017

UIView Animation
Changes to certain UIView properties can be animated over time
frame/center
transform (translation, rotation and scale)
alpha (opacity)
backgroundColor

Done with UIView class method(s) using closures
The class methods takes animation parameters and an animation block as arguments.
The animation block contains the code that makes the changes to the UIView(s).
The changes inside the block are made immediately (even though they will appear “over time”).
Most also have another “completion block” to be executed when the animation is done.

CS193p

Winter 2017

UIView Animation
Animation class method in UIView
class func animate(withDuration: TimeInterval,

delay: TimeInterval,
options: UIViewAnimationOptions,

animations: () -> Void,
completion: ((finished: Bool) -> Void)?)

CS193p

Winter 2017

UIView Animation
Example
if myView.alpha == 1.0 {

UIView.animate(withDuration: 3.0,
delay: 2.0,

options: [.curveLinear],
animations: { myView.alpha = 0.0 },
completion: { if $0 { myView.removeFromSuperview() } })

print(“myView.alpha = \(myView.alpha)”)
}
This would cause myView to “fade” out over 3 seconds (starting 2s from now).
Then it would remove myView from the view hierarchy (but only if the fade completed).
If, within the 5s, someone animated the alpha to non-zero, the removal would not happen.
The output on the console would be …
myView.alpha = 0.0
… even though the alpha on the screen won’t be zero for 5 more seconds!

CS193p

Winter 2017

UIView Animation
UIViewAnimationOptions
beginFromCurrentState // pick up from other, in-progress animations of these properties
allowUserInteraction // allow gestures to get processed while animation is in progress
layoutSubviews // animate the relayout of subviews with a parent’s animation
repeat // repeat indefinitely
autoreverse // play animation forwards, then backwards
overrideInheritedDuration // if not set, use duration of any in-progress animation
overrideInheritedCurve // if not set, use curve (e.g. ease-in/out) of in-progress animation
allowAnimatedContent // if not set, just interpolate between current and end “bits”
curveEaseInEaseOut // slower at the beginning, normal throughout, then slow at end
curveEaseIn // slower at the beginning, but then constant through the rest
curveLinear // same speed throughout

CS193p

Winter 2017

UIView Animation
Sometimes you want to make an entire view modification at once

In this case you are not limited to special properties like alpha, frame and transform
Flip the entire view over UIViewAnimationOptions.transitionFlipFrom{Left,Right,Top,Bottom}
Dissolve from old to new state .transitionCrossDissolve
Curling up or down .transitionCurl{Up,Down}

Use closures again with this UIView class method
UIView.transition(with: UIView,

duration: TimeInterval,
options: UIViewAnimationOptions,

animations: () -> Void,
completion: ((finished: Bool) -> Void)?)

CS193p

Winter 2017

UIView Animation
Example

Flipping a playing card over …
UIView.transition(with: myPlayingCardView,

duration: 0.75,
options: [.transitionFlipFromLeft],

animations: { cardIsFaceUp = !cardIsFaceUp }
completion: nil)

Presuming myPlayingCardView draws itself face up or down depending on cardIsFaceUp
This will cause the card to flip over (from the left edge of the card)

CS193p

Winter 2017

UIView Animation
Animating changes to the view hierarchy is slightly different

In other words, you want to animate the adding/removing of subviews (or (un)hiding them)
UIView.transition(from: UIView,

to: UIView,
duration: TimeInterval,
options: UIViewAnimationOptions,

completion: ((finished: Bool) -> Void)?)
UIViewAnimationOptions.showHideTransitionViews if you want to use the hidden property.
Otherwise it will actually remove fromView from the view hierarchy and add toView.

CS193p

Winter 2017

View Animation
Demos

Smoother blinking in FaceIt
“Head shake” in FaceIt

CS193p

Winter 2017

Dynamic Animation
A little different approach to animation than UIView-based

Set up physics relating animatable objects and let them run until they resolve to stasis.
Easily possible to set it up so that stasis never occurs, but that could be performance problem.

Steps
Create a UIDynamicAnimator
Add UIDynamicBehaviors to it (gravity, collisions, etc.)
Add UIDynamicItems (usually UIViews) to the UIDynamicBehaviors

(UIDynamicItem is an protocol which UIView happens to implement)
That’s it! Things will instantly start animating!

CS193p

Winter 2017

Dynamic Animation
Create a UIDynamicAnimator
var animator = UIDynamicAnimator(referenceView: UIView)
If animating views, all views must be in a view hierarchy with referenceView at the top.

Create and add UIDynamicBehavior instances
e.g., let gravity = UIGravityBehavior()
animator.addBehavior(gravity)
e.g., collider = UICollisionBehavior()
animator.addBehavior(collider)

CS193p

Winter 2017

Dynamic Animation
Add UIDynamicItems to a UIDynamicBehavior
let item1: UIDynamicItem = ... // usually a UIView
let item2: UIDynamicItem = ... // usually a UIView
gravity.addItem(item1)
collider.addItem(item1)
gravity.addItem(item2)

item1 and item2 will both be affect by gravity
item1 will collide with collider’s other items or boundaries, but not with item2

CS193p

Winter 2017

Dynamic Animation
UIDynamicItem protocol

Any animatable item must implement this …
protocol UIDynamicItem {

var bounds: CGRect { get } // note that the size cannot be animated
var center: CGPoint { get set } // but the position can
var transform: CGAffineTransform { get set } // and so can the rotation

}
UIView implements this protocol
If you change center or transform while the animator is running,

you must call this method in UIDynamicAnimator …
func updateItemUsingCurrentState(item: UIDynamicItem)

CS193p

Winter 2017

Behaviors
UIGravityBehavior
var angle: CGFloat // in radians; 0 is to the right; positive numbers are counter-clockwise
var magnitude: CGFloat // 1.0 is 1000 points/s/s

UIAttachmentBehavior
init(item: UIDynamicItem, attachedToAnchor: CGPoint)
init(item: UIDynamicItem, attachedTo: UIDynamicItem)
init(item: UIDynamicItem, offsetFromCenter: CGPoint, attachedTo[Anchor]…)
var length: CGFloat // distance between attached things (this is settable while animating!)
var anchorPoint: CGPoint // can also be set at any time, even while animating
The attachment can oscillate (i.e. like a spring) and you can control frequency and damping

CS193p

Winter 2017

Behaviors
UICollisionBehavior
var collisionMode: UICollisionBehaviorMode // .items, .boundaries, or .everything

If .Items, then any items you add to a UICollisionBehavior will bounce off of each other

If .Boundaries, then you add UIBezierPath boundaries for items to bounce off of …
func addBoundary(withIdentifier: NSCopying, for: UIBezierPath)
func addBoundary(withIdentifier: NSCopying, from: CGPoint, to: CGPoint)
func removeBoundary(withIdentifier: NSCopying)
var translatesReferenceBoundsIntoBoundary: Bool // referenceView’s edges
NSCopying means NSString or NSNumber, but remember you can as to String, Int, etc.

CS193p

Winter 2017

Behaviors
UICollisionBehavior

How do you find out when a collision happens?
var collisionDelegate: UICollisionBehaviorDelegate

… this delegate will be sent methods like …
func collisionBehavior(behavior: UICollisionBehavior,

began/endedContactFor: UIDynamicItem,
withBoundaryIdentifier: NSCopying // with:UIDynamicItem too

at: CGPoint)

The withBoundaryIdentifier is the one you pass to addBoundary(withIdentifier:).

CS193p

Winter 2017

Behaviors
UISnapBehavior
init(item: UIDynamicItem, snapTo: CGPoint)
Imagine four springs at four corners around the item in the new spot.
You can control the damping of these “four springs” with var damping: CGFloat

UIPushBehavior
var mode: UIPushBehaviorMode // .continuous or .instantaneous
var pushDirection: CGVector
… or …
var angle: CGFloat // in radians and …
var magnitude: CGFloat // magnitude 1.0 moves a 100x100 view at 100 pts/s/s

Interesting aspect to this behavior
If you push .instantaneous, what happens after it’s done?
It just sits there wasting memory.
We’ll talk about how to clear that up in a moment.

CS193p

Winter 2017

Behaviors
UIDynamicItemBehavior

Sort of a special “meta” behavior.
Controls the behavior of items as they are affected by other behaviors.
Any item added to this behavior (with addItem) will be affected by …
var allowsRotation: Bool
var friction: CGFloat
var elasticity: CGFloat
… and others, see documentation.

Can also get information about items with this behavior ...
func linearVelocity(for: UIDynamicItem) -> CGPoint
func addLinearVelocity(CGPoint, for: UIDynamicItem)
func angularVelocity(for: UIDynamicItem) -> CGFloat

Multiple UIDynamicItemBehaviors affecting the same item(s) is “advanced” (not for you!)

CS193p

Winter 2017

Behaviors
UIDynamicBehavior

Superclass of behaviors.
You can create your own subclass which is a combination of other behaviors.
Usually you override init method(s) and addItem and removeItem to call …
func addChildBehavior(UIDynamicBehavior)
This is a good way to encapsulate a physics behavior that is a composite of other behaviors.
You might also have some API which helps your subclass configure its children.

All behaviors know the UIDynamicAnimator they are part of
They can only be part of one at a time.
var dynamicAnimator: UIDynamicAnimator? { get }
And the behavior will be sent this message when its animator changes …
func willMove(to: UIDynamicAnimator?)

CS193p

Winter 2017

Behaviors
UIDynamicBehavior’s action property

Every time the behavior acts on items, this block of code that you can set is executed …
var action: (() -> Void)?
(i.e. it’s called action, it takes no arguments and returns nothing)
You can set this to do anything you want.
But it will be called a lot, so make it very efficient.
If the action refers to properties in the behavior itself, watch out for memory cycles.

CS193p

Winter 2017

Stasis
UIDynamicAnimator’s delegate tells you when animation pauses

Just set the delegate …
var delegate: UIDynamicAnimatorDelegate
… and you’ll find out when stasis is reached and when animation will resume …
func dynamicAnimatorDidPause(UIDynamicAnimator)
func dynamicAnimatorWillResume(UIDynamicAnimator)

CS193p

Winter 2017

Memory Cycle Avoidance
Example of using action and avoiding a memory cycle

Let’s go back to the case of a .Instantaneous UIPushBehavior
When it is done acting on its items, it would be nice to remove it from its animator
We can do this with the action method, but we must be careful to avoid a memory cycle …
if let pushBehavior = UIPushBehavior(items: […], mode: .instantaneous) {

pushBehavior.magnitude = …
pushBehavior.angle = …
pushBehavior.action = {

pushBehavior.dynamicAnimator!.removeBehavior(pushBehavior)
}
animator.addBehavior(pushBehavior) // will push right away

}
The above has a memory cycle because its action captures a pointer back to itself
So neither the action closure nor the pushBehavior can ever leave the heap

CS193p

Winter 2017

Memory Cycle Avoidance
Example of using action and avoiding a memory cycle

Let’s go back to the case of a .Instantaneous UIPushBehavior

When it is done acting on its items, it would be nice to remove it from its animator

We can do this with the action method, but we must be careful to avoid a memory cycle …

if let pushBehavior = UIPushBehavior(items: […], mode: .instantaneous) {
 pushBehavior.magnitude = …
 pushBehavior.angle = …
 pushBehavior.action = { [unowned pushBehavior] in
 pushBehavior.dynamicAnimator!.removeBehavior(pushBehavior)
 }
 animator.addBehavior(pushBehavior) // will push right away
}
Now it no longer captures pushBehavior

This is safe to mark unowned because if the action closure exists, so does the pushBehavior

When the pushBehavior removes itself from the animator, the action won’t keep it in memory

So they’ll both leave the heap because the animator no longer points to the behavior

